信号x(t)由两个频率和相位均不相等的余弦函数叠加而成,其数学表达式为:x(t)=A1 cos(ω1 t+θ1)+A2 cos(ω2t+θ2
信号x(t)由两个频率和相位均不相等的余弦函数叠加而成,其数学表达式为:x(t)=A1cos(ω1t+θ1)+A2cos(ω2t+θ2),求该信号的自相关函数Rx(τ)。
信号x(t)由两个频率和相位均不相等的余弦函数叠加而成,其数学表达式为:x(t)=A1cos(ω1t+θ1)+A2cos(ω2t+θ2),求该信号的自相关函数Rx(τ)。
频率特性的测试
一、实验目的
1.掌握频率特性的测量方法。
2.进一步明确频率特性的概念及物理意义。
3.明确控制系统的参数,观测参数变化对频率特性的影响。
二、实验内容
1.用实验的方法,确定系统的频率特性。
2.改变被测系统的参数,观测参数变化对频率特性的影响。
三、实验的原理与方法
1.实验原理
一个稳定的线性系统,在正弦信号的作用下,它的稳态输出将是一个与输入信号同频率的正弦信号,但振幅和相位一般与输入信号不同,而且随着输入信号的频率变化而变化。
在被测系统的输入端加正弦电压,待平稳后,其输入端亦为同频率的正弦电压,但幅值与相位一般都将发生变化,幅值与相位变化的大小和输入信号频率相反。
取正弦输出与正弦输入的复数比,即为被测系统(或网络)的频率特性。
改变输人信号频率ω,使ω为ωi,测得频率ωi对应的输出电压振幅Uemi与相位φi(ω)及输入信号的振幅Urmi。计算出振幅比。由Ami及φi(ω)做出幅相频率特性曲线;由20lgAmi及φi(ω)做出对数幅频和频率特性曲线。
对于参数完全未知的线形稳定系统可以通过实验方法求出其频率特性;我们从学习测试方法的角度,可以对已知的系统测其频率特性;在生产实践中,也常常使对已知的调试完毕的控制系统,确定其实际的频率特性。
2.实验方法
根据设备情况,提出不同的测试方法供确定具体实验方法时参考。
方法一:充分利用现有的设备进行测试
(1)使用设备
超低频信号发生器一台
示波器两台(一台也可以做本实验)
被测系统一个(或电子模拟器一台)
直流稳压电源一台
三用表一块
(2)实验方法
采用“李萨育图形”法测控制系统的相频。这种方法所用的设备较简单又普通,一般的实验室都有这些设备。
下边介绍“李萨育图形”法的测试方法
设有两个正弦信号
x(ωt)与y(ωt)在空间垂直。若以x(ωt)为横轴,以y(ωt)为纵轴,以ωt作为参变量,随ωt的变化x(ωt)和y(ωt)所确定的点的轨迹,是在x-y平面上描绘出一条封闭的曲线,是一个椭圆,即为“李萨育图形”,如下图所示。
如果令x(ωt)为一个稳定的线型系统的输入信号,其输出信号是同频率的信号,只是辅值与相位都和输入信号不同,令输出信号为y(ωt)。只要改变频率,就有相应的xi(ωt)与yi(ωt),就可以获得一系列的李萨育图形。这一系列的李萨育图形的形状都是由y(ωt)与x(ωt)的相位差φ(ω)决定的,当系统确定之后,φ(ω)是随频率变化而变化的,故可由李萨育图形求出(ω)相频特性曲线。
相应差的求法。
由
当ωt=0时,则
x(0)=0
y(0)=Ymsinφ
故
这样只要能读出李萨育图形中的2y0,就可求出2Ym。下表,列出了φ(ω))四种超前或滞后的情况。
A.电压为0
B. 幅度为单个信号源的2倍、相位与原信号源相同的正弦电压
C. 幅度与单个信号源的相同、相位与原信号源相差90°的正弦电压
D. 幅度与单个信号源的相同、频率比原信号高一倍的正弦电压
已知x(t)是最高频率为4kHz的连续时间带限信号.
(1)若对x(t)进行平顶抽样获得的已抽样信号xp(t)如图5-31所示,试由xp(t)恢复出x(t)的重构滤波器的频率响应HL(w),并概画出其幅频响应和相频响应;
(2)在题(1)求得的重构滤波器为什么不可实现?为实现无失真恢复原信号,需对抽样频率和重构滤波器频率响应HL(w)作怎样的修改?
A.频率相同且相位相等
B.频率不同但相位相等
C.频率相同且相位差达到最小的固定值
D.频率不同,相位也不等
A.发电机端电压有效值与电网电压有效值相等,相位一致
B.发电机和电网电压相序一致
C.发电机和电网电压频率相等
设正弦随机相位信号s(t;θ)=αcos(ωot+θ),其中,振幅α,频率ωo均为常数;相位θ是在(-π,π)上服从均匀分布的随机变量。请问信号s(t;π)是否是平稳信号?若s(t;θ)是平稳随机信号,求其功率谱密度Ps(ω)。